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About this document: Towards a Formalization of the HSA Memory Model in
the cat Language

This document describes the HSA memory model formalization in the cat language.

The cat language is domain-specific and allows users to define axiomatic models by stating constraints
over the candidate executions of a concurrent program. For a given program, candidate execution gathers a
choice of control flow and data flow.

This document is organized as follows:

l Section 1 Preamble on axiomatic models (on page 9): Contains a brief overview of the notions of
axiomatic models and candidate executions.

l Section 2 A glimpse of cat (on page 16): Describes the consistency model written in cat, which
states constraints over these candidates and rule out some of them. This section also explains how a
specification written in cat can rule out executions, and the syntax of cat.

l Section 3 A cat specification of the HSA memory model (on page 35): Presents several versions of a
cat specification of the HSA memory model1 .

Formal syntax and semantics of the cat language are listed in Syntax and Semantics of the cat Language.

Audience
This document is written for system and component architects interested in supporting the HSA
infrastructure (hardware and software) within platform designs.

Online companion materials
The herd7 tool is the simulator used, which takes as input a cat specification and a litmus test, and
determines if the candidate executions of this test are allowed according to the cat specification. The
semantics of cat have been implemented in the herd7 tool. The sources and documentation for the tool
are available online at diy.inria.fr/tst7/doc/herd.html. You are encouraged to try out the cat files and tests
shown in this document on the web interface of herd7, located at virginia.cs.ucl.ac.uk/herd. The HSA models
are available as cat files at virginia.cs.ucl.ac.uk/herd/?record=hsa.

HSA Information Sources
l HSA Programmer's Reference Manual Version 1.2

l HSA Platform System Architecture Specification Version 1.2 describes the HSA system architecture.

l HSA Runtime Programmer’s Reference Manual Version 1.2 describes the HSA runtime.

1HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.

About this document: Towards a Formalizationof the HSAMemoryModel in the cat Language Audience

http://diy.inria.fr/tst7/doc/herd.html
http://virginia.cs.ucl.ac.uk/herd
http://virginia.cs.ucl.ac.uk/herd?record=hsa


About this document: Towards a Formalizationof the HSAMemoryModel in the cat Language Disclaimer

Disclaimer
Most of this document has been taken from the authors' paper1, currently under submission.

1Jade Alglave, Patrick Cousot, and Luc Maranget. La langue au chat: cat, a language to describe consistency
properties. Under submission.
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1. Preamble on axiomatic models
Axiomatic models filter candidate executions of a multithread program. Suchmodels are usually defined in
three stages:

l First, an instruction semanticmaps each instruction of the program to mathematical objects. This
allows for definition of the control-flow semantics of a multithreaded program.

l Second, a set of candidate executions is built from the control-flow semantics. Each candidate
execution represents a specific data-flow of the program, i.e., the communications that might happen
between the different threads of the program.

l Third, a consistency specification decides the valid and invalid candidate executions.

1.1 Multithreaded programs
Multithreaded programs give one sequence of instructions per thread. Instructions can come from an
assembly language instruction set, such as Power ISA, or be pseudo-code instructions as shown in Figure 1–
1 (below).

Figure 1–1 A message passing idiom in LISA

LISA MP
{ x = 0; y = 0; }
P0 | P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;
exists(1:r1=1 /\ 1:r2=0)

This program is written in the homemade LISA (Litmus Instruction Set Architecture) language. The syntax of
LISA is not described in this document, but a few key elements of it are summarized next.

Semantics of instructions. This document abstracts away from instruction semantics. It is assumed that
an engine, or semantics, exists that can build its candidate executions from a given program. This is
assumed because such instruction semantics have been implemented in the herd7 simulator for various
front-ends, including LISA (the pseudo-code used in this document), IBM Power, and ARM assembly.

Intuitively, the program shown in Figure 1–1 (above) (a message-passing idiom) is made of two threads P0
and P1 running in parallel; they communicate via shared variables x and y that are initialized to the value 0.
The thread P0 writes the value 1 into x and the value 1 into y. The thread P1 reads y and places its value
into register r1, and reads x and places its value into register r2.

If x is thought of as data being updated by P0 and y as a flag being set up by P0, it is apparent that P0 and
P1 are in a producer-consumer relationship: it could be desirable that the consumer P1 could access the
updated data after getting the flag from the producer P0.

Syntactically, this program shows:

l its name, MP (for “message-passing”), prefixed by the language in which the program is written, LISA:

LISA MP

l its prelude, between curly brackets:

{ x = 0; y = 0; }

l its body, made of two threads P0 and P1 in parallel:
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P0 | P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;

l its postlude (a question about the final state of the registers and shared variables after the two
threads are done):

exists(1:r1=1 /\ 1:r2=0)

In the prelude, it is announced that the two threads P0 and P1 are sharing variables x and y, and that
these two variables are initialized to the value 0.

In the body, notice that the thread P0 holds two write instructions (as shown by the syntax w[]), these
instructions being in sequence.

l The first instruction, below the process identifier P0, writes the immediate value 1 into the shared
variable x; the LISA syntax is w[] x 1. (The purpose of the square brackets [] is described in 1.4.1
Events (on page 13) and 2.3 Using annotations (on page 24).

l The second instruction on P0 writes 1 into the shared variable y; the LISA syntax is w[] y 1.

The thread P1 holds two read instructions as shown by the syntax r[] in sequence.

l The first instruction, just below the identifier P1, reads the shared variable y and places the result
into register r1, private to P1; the LISA syntax is r[] r1 y.

l The second instruction on P1 reads the shared variable x and places the result into register r2; the
LISA syntax is r[] r2 x.

In the postlude (the last line of the program, starting with exists), a question is asked about the values
in registers r1 and r2 at the end of the execution of the two threads: Is there a program execution that, in
the end, r1 holds the value 1, and r2 holds the value 0? If such an execution exists, the message-passing
protocol has failed. In this case, the consumer P1 could access stale data (the initial value of x), whereas it
got the flag (the value 1 in y) from the producer P0.

There is no right answer to a postlude question. Answering it is a matter of:

1. Building the candidate executions of the program.

2. Using a weakly consistent specification at hand to filter out the candidate executions that are
forbidden by said specification.

3. Checking the remaining candidate executions allowed by the specification to see if some can lead to
the values specified in the postlude.

Building the candidate executions of the example programmeans trying to understand how the program
can execute. The semantics of LISA are not described in this document, but a glimpse is shown in 1.2 Control-
flow semantics (on the facing page), 1.3 Data-flow semantics (on the facing page), and 1.4 Candidate
executions (on page 13). Section 2 A glimpse of cat (on page 16) provides some initial examples of cat
specifications.

Executions are phrased in terms of:

l Events that represent, for example, register or memory accesses

l Relations between these events, for example, communications between two threads

Candidate executions are built in stages:

10 | Towards a Formalizationof the HSAMemoryModel in the cat Language, Version1.2
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l The control-flow semantics (see 1.2 Control-flow semantics (below)) build events (which model
accesses to registers or memory) and the program order (the order in which instructions have been
written in the original program).

l The data-flow semantics (see 1.3 Data-flow semantics (below)) build the communications between
threads, which determines where a read of a given shared variable takes its value.

l The candidate executions (see 1.4 Candidate executions (on page 13)) gather control- and data-flow.

1.2 Control-flow semantics
The instruction semantics translate instructions into events, which representmemory or register accesses
(reads and writes from and to memory or registers), branching decisions, or fences.

Figure 1–2 (below) shows possible control-flow semantics to the program in Figure 1–1 (on page 9). To do
this:

l Each store instruction (e.g., w[] x 1 on P0), corresponds to a write event specifying an address
and a value (e.g., W[]x1).

l Each load instruction (e.g., r[] r1 y on P1) corresponds to a read event that specifies an address
and an undetermined value (e.g., R[]y?). In the example, the addresses of the events are
determined by the program text and the values of the writes.

Figure 1–2 Control-flow semantics for the message-passing pattern of Figure 1–1

For reads, the values are determined in the next stage (see 1.3 Data-flow semantics (below). Implicit write
events W[]x0 and W[]y0 also exist, representing the initial state of x and y, which are not depicted here.

The instruction semantics also define relations over these events, representing, for example, the program
order within a thread, or address, data or control dependencies from one memory access to the other via
computations over register values.

Figure 1–2 (above) also shows the program order relation, written po, which lifts the order in which
instructions have been written to the level of events. For example, the two stores on P0 in Figure 1–1 (on
page 9) have been written in program order; thus their corresponding events W[]x1 and W[]y1 are
related by po in Figure 1–2 (above).

To summarize: Given a program such as the one shown in Figure 1–1 (on page 9), several event graphs exist,
such as the one in Figure 1–2 (above). Each graph gives a set of events representing accesses to memory
and registers, and the program order between these events, including branching decisions and the
dependencies.

1.3 Data-flow semantics
Data flow defines which communications, or interferences, might happen between the different threads of
the program. To do so, the read-from relation rf over memory events must be defined.

1. Preamble onaxiomaticmodels 1.2 Control-flow semantics
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For any given read, the read-from relation rf describes from which write this read has taken its value. A
read-from arrow with no source, as shown in the top left of Figure 1–3 (below), corresponds to reading from
the initial state.

In Figure 1–3 (below), notice the candidate execution at the top right corner. The read c from y takes its
value from the initial state, hence reads the value 0. The read d from x takes its value from the update a of
x by P0, hence reads the value 1.

Figure 1–3 Possible data-flow semantics for the control-flow semantics given in Figure 1–2

The initial writes are not shown in Figure 1–3 (above), but the bottom left drawing of Figure 1–4 (below)
shows a more complete picture with the initial writes. Note that the candidate execution of Figure 1–4
(below) is in violation of Lamport’s Sequential Consistency (SC)1 . The initial writes are the writes coming
from the prelude of a test, and they are gathered in the set IW. Figure 1–3 (above) shows IW = {ix,
iy}.

Figure 1–4 The non-SC execution of MP

At this point, the following items have been illustrated:

l A given program (Figure 1–1 (on page 9))

l An event graph as given by the control-flow semantics (Figure 1–2 (on the previous page))

1Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. Computers, 28(9):690–691, 1979.

12 | Towards a Formalizationof the HSAMemoryModel in the cat Language, Version1.2
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l Several read-from relations describing possible communications across threads (Figure 1–3 (on the
previous page))

Note that for a given control-flow semantics, there could be several suitable data-flow semantics. For
example, if there were several writes to x with value 1 in the program, there would be two possible writes to
give the value 1 to the read of x on P1.

Each such object is called a candidate execution. As shown in Figure 1–3 (on the previous page), there can be
more than one candidate execution for a given program. To learn more about candidate executions, see 1.4
Candidate executions (below).

1.4 Candidate executions
Candidate executions are tuples:

which gather a number of objects, some of which have already been seen:

l the events (reads and writes relative to memory)

l the program order po on each thread

l the read-from relation rf, modelling who reads from where

l the initial writes IW

l the final writes

l a scope relation, indicating how threads are distributed along a given concurrency hierarchy as
needed to model, for example, GPU models (see e.g., Alglave et al1 and 3 A cat specification of the
HSA memory model (on page 35).

1.4.1 Events

Events evts gather register, write and read accesses, branch, and fence events. More precisely, an event
specifies:

l its location, whether a private register r or a shared variable x.

l its kind (W for writes, R for reads, B for branches, F for fences). W, R, B, F is written for the set of all
writes, reads, branches, and fences respectively.

l its process identifier (pid); the thread it comes from.

Events can be annotated as described in 2.3 Using annotations (on page 24). This is the purpose of the
square brackets in an event (for example, w[] x 1 is a write to address x with value 1 with no annotation,
whereas w[rel] x 1 has an annotation rel).

1Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl,
Tyler Sorensen, and JohnWickerson. GPU concurrency: Weak behaviours and programming assumptions. In
ASPLOS, 2015.

1. Preamble onaxiomaticmodels 1.4 Candidate executions
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Such annotations can then be given semantics within a consistency specification. For example, 3.2 Declaring
tags, scopes, and instructions for HSA (on page 36) and 2.3 Using annotations (on page 24) show the
release-acquire paradigm as used, for example, in C++1 or HSA2 as a set of constraints on “release” and
“acquire” annotations.

Auxiliaries to extract components of an event e include:

1.4.2 Program order

Program order, abbreviated po, lifts the order in which instructions have been written in the text of a
program to the level of events. For each candidate execution, program order is a total order over events
within the same thread, and it cannot relate events from different threads.

1.4.3 Read-from

Read-from, abbreviated rf, relates a read of a certain shared variable x to a unique write of the same
variable. The read-from relation indicates who reads from where.

1.4.4 Initial and final writes

Initial and final writes are gathered in the sets IW and FW respectively.

Initial writes IW are the writes in the prelude of the program. Final writes are gathered in the set FW, which
can be empty or contain one write per address (picked arbitrarily in the program body).

Note: This departs from a traditional view on ordering writes to the same location. There is no built-in
coherence order within candidate executions. By using the sets of initial and final writes IW and FW, two
relations, co-pre and co-post, are built so that:

l co-pre relates the initial write of x, taken from IW, to all the writes in the program body:

l co-post relates the writes of x in the program body to the final write of x, if any:

co-pre and co-post are gathered in a relation that is written co0. The user is left in charge of building a
coherence order at his discretion (see example in 2.5 Building the coherence order (on page 30)).

1C++. ISO international standard ISO/IEC 14882:2014(e) — Programming Language C++, 2014.
isocpp.org/std/the-standard
2HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.

14 | Towards a Formalizationof the HSAMemoryModel in the cat Language, Version1.2
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1.4.5 Scope relation

Scope relation, abbreviated sr, relates events that come from threads that reside in the same scope. This is
uses for scopedmodels such as GPUs (see e.g., Alglave et al1 and 2 A glimpse of cat (on page 16)).

Auxiliaries to extract components of a candidate execution (evts , po, rf, IW, FW, sr) include:

1.5 Consistency specification
The consistency specification determines if each candidate execution is valid.

Traditionally, such specifications list constraints phrased in terms of acyclicity, irreflexivity, or emptiness of
various combinations of the relations over events given by the candidate execution. For example, the
specification could forbid a candidate execution if the candidate contains a cycle amongst a certain relation
declared acyclic in the specification.

1Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl,
Tyler Sorensen, and JohnWickerson. GPU concurrency: Weak behaviours and programming assumptions. In
ASPLOS, 2015.

1. Preamble onaxiomaticmodels 1.5 Consistency specification
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2. A glimpse of cat
Consistency models can be viewed as ways of constraining the semantics of a concurrent program. A
consistency model enunciates constraints over the writes that a given read can see.

A semantic framework, implemented in the herd7 tool, is provided to define consistency models. The
domain-specific cat language is proposed for specifying consistency models as lists of constraints over
candidate executions.

This section introduces concepts that will be useful in the formalization of HSA. (See Syntax and Semantics of
the cat Language Version 1.2 for the complete syntax and semantics of cat and examples of how
consistency models can be written in cat.)

The HSA model1 ensures the following properties (among others described in this section):

l It ensures a property called SC per location in2, which is a feature of several models such as x863

and IBM Power4.

l It ensures that message-passing idioms (see Figure 1–1 (on page 9)) behave so that the consumer
P1 cannot read a stale data in x after seeing the flag y raised by the producer P0. In other words, it
forbids the non-SC execution of MP (see Figure 1–4 (on page 12)). This feature is at the heart of
several models, including C++5, Java6, IBM Power, and Nvidia PTX7.

l It provides means to restore SC at each scope level.

The HSA model has the following features:

1. Accesses can be annotated to form special pairs, typically used to:

o Forbid the non-SC execution of the message-passing idiom by forming special inter-thread
communication pairs

o Restore a strong model such as SC

2. Threads are distributed along a concurrency hierarchy delimited by scopes.

To introduce these concepts gradually, several cat specifications are provided:

1HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.
2Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, testing, and data-
mining for weak memory. TOPLAS, 36(2), 2014b.
3Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In TPHOLs, pages
391–407. Springer, 2009.
4Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl,
Tyler Sorensen, and JohnWickerson. GPU concurrency: Weak behaviours and programming assumptions. In
ASPLOS, 2015.
5Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++ concurrency.
In POPL, pages 55–66. ACM, 2011.
6Jaroslav Sevcik and David Aspinall. On validity of program transformations in the java memory model. In
ECOOP, 2008.
7Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl,
Tyler Sorensen, and JohnWickerson. GPU concurrency: Weak behaviours and programming assumptions. In
ASPLOS, 2015.
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l 2.1 Flagging and forbidding the non-SC execution of MP (below) contains a cat specification that
signals the non-SC execution of MP, and forbids it.

l 2.2.1 Under SC (on page 21) contains a cat specification of SC.

l 2.2.2 SC per location (on page 22) weakens SC to hold only per location.

l 2.3 Using annotations (on page 24) and 2.4 Scopedmodels (on page 26) describe the notions of
annotations on accesses and scopes (necessary to describe HSA).

In Sections 1 Preamble on axiomatic models (on page 9) and 3 A cat specification of the HSA memory model
(on page 35), a somewhat traditional view on coherence is taken, in that there is a total order over writes to
the same address, which intuitively represents the order in which these writes hit the memory. co is written
for this order, and 2.5 Building the coherence order (on page 30) details how it is built in cat. This
traditional view on coherence is not a built-in of cat, and a cat specification can be written, for example, in
which the coherence is not total.

2.1 Flagging and forbidding the non-SC execution of MP
Section 2.1.1 Execution characteristics (below) characterizes the execution that leads to the message-
passing protocol failing. This execution is shown in Figure 1–4 (on page 12), where the read of y by P1 reads
from the write of y by P0, whereas the read of x by P0 reads from the prelude.

2.1.1 Execution characteristics

The relations between all the events of this execution are as follows:

l The two writes by P0 are in program order: (a, b) ∈ po. In addition, the two reads by P1 are in
program order: (c, d) ∈ po.

l The read of y by P1 takes its value from the write of y by P0; thus these two events are in rf: (b, c)
∈ rf. Moreover, they come from different threads so they also belong to the ext relation, which
gathers all pairs of events coming from different threads: (b, c) ∈ rf∩ ext.

l The read of x by P1 takes its value from the write ix of x from the prelude: (ix, d) ∈ rf. By
convention, the write ix of x from the prelude hits the memory before the write of x by P0: (ix, a)
∈ co; thus the read d of x by P1 relates to the write a of x by P0 as follows: the read d takes its value
from the initialization ix, which is overwritten by the update a. This relation is called from-read,
abbreviated fr: (d, a) ∈ fr.

In general, a new relation is defined fr, from a read r to writes (e.g., w1, w2) that are co-after the unique
write w0 such that (w0, r) ∈ rf. Intuitively, fr relates a read r to the writes (e.g., w1, w2) that overwrite the
values that r reads from the write w0.

Figure 2–1 (on the next page) shows a graphical representation of fr. Figure 2–2 (on the next page) shows a
redraw of the non-SC execution of MP, with an apparent fr arrow, but without initial writes.

2. Aglimpse of cat 2.1 Flaggingand forbidding the non-SC execution of MP
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Figure 2–1 Illustration of fr

Figure 2–2 The non-SC execution of MP, with fr apparent

2.1.2 The cat language

The cat language is a homemade, domain-specific language that lets users specify such relations between
events and constraints over these relations. Certain syntactic constructs of cat describe the sample
specifications:

l The following built-in sets: the set of all writes W (amongst which the initial and final writes IW and
FW), the set of all reads R, the set of all memory events M (such that M equals the union of W and R),
and the set of all events, denoted by the underscore symbol "_".

l The following built-in relations: the empty relation 0, the program order po, the read-from rf, the
relation ext gathering events from different threads, and the relation loc gathering events
accessing the same shared variable.

l The new relations are defined with let or let rec operators. Unions, intersections, and
sequences of relations are built with |, &, and ; respectively. Transitive closure is built with +, and
transitive and reflexive closure is built with *. The complement is built with ~, and the subtraction is
built with \.

l Checks are implemented by the acyclic, irreflexive, and empty constructs. The negation of
such statements can be checked as well. For example, ~irreflexive(r) checks if the relation r
is not irreflexive (i.e., r is reflexive). If the property does not hold, the candidate execution is
forbidden.

For example, the read-from relation between events of different threads can be defined as follows:

let rfe = rf & ext

As shown, a new identifier rfe (for read-from external) is declared that denotes the intersection & of the
read-from rf and the ext relation.
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As shown in Figure 2–1 (on the previous page), the from-read relation has been defined and illustrated. The
from-read relation is defined as follows:

let fr = rf^-1;co
let fre = fr & ext

A new identifier fr, is declared, which is bound to the expression rf^-1;co. This expression reads “one
step of rf backward, then one step of co forward.” In other words, the symbol ; denotes the composition, or
sequence, of relations: r1;r2 is defined as the set of pairs (x, y) such that there exists an intervening z,
such that (x, z) ∈ r1 and (z, y) ∈ r2. The symbol ^-1 denotes the inverse of a relation. The external from-
read relation fre is declared in a similar way to rfe above.

2.1.3 Flagging the non-SC execution of MP

Notice that in the candidate execution being characterized (Figure 2–2 (on the previous page)), there is one
step of program order po on P0 ((a, b) ∈ po), then one step of rfe between P0 and P1 via y ((b, c) ∈ rf),
then one more step of po on P1 ((c, d) ∈ po). In cat, this can be written:

po;rfe;po

More generally, sequence of steps is apparent in either program order po or external read-from rfe. This
relation is called happens-before, and is abbreviated as hb. For this sample specification, hb is defined as:

let hb = po | rfe)+

In other words, hb is the transitive closure + of the union of program order po and external read-from rfe;
there is (a, d) ∈ hb.

Thus the execution under examination is such that the external from-read relation fre between P1 and P0
via x goes against happens-before hb: there is (d, a) ∈ fr and (a, d) ∈ hb. In other words, this is an
execution of MP where the sequence fre;hb is not irreflexive. This can be characterized in cat using the
flagmechanism:

flag ~irreflexive fre;hb as incriminated

Note that this cat statement will not forbid the non-SC execution of MP shown in Figure 2–2 (on the previous
page). Flags are merely for signaling and recording certain shapes of executions, like the one characterized
step-by-step in 2.1.1 Execution characteristics (on page 17). Thus the statement above will simply flag the
non-SC execution of MP under the name incriminated.

2.1.4 Forbidding the non-SC execution of MP

The “goes against” concept (or its negation) will be used often. The HSA documentation calls this
“consistent,” so the same terminology will be used. Two relations a and b are consistent (or equivalently that
b does not go against a) when their sequence is irreflexive:

procedure consistent(a,b) =
irreflexive a;b

end

A procedure is consistent when it takes two arguments a and b and requires the irreflexivity of the
sequence a;b. Calling this procedure on fre and hb:

call consistent(fre, hb)

will forbid the incriminated execution.

2. Aglimpse of cat 2.1 Flaggingand forbidding the non-SC execution of MP
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2.1.5 Notion summary

Figure 2–3 (below) and Figure 2–4 (below) summarize the notions that have been introduced in two cat
files. Notice the difference between flagged and non-flagged checks:

l The keyword flag records that an execution has exhibited a certain shape (here that fre goes
against hb). The execution is allowed by the specification, but remarkable in the way defined by the
flagged check.

l A non-flagged check rules out an execution. The execution is forbidden by the specification.

For example, the cat specification in Figure 2–3 (below) will flag the non-SC execution of MP under the
name incriminated, where the specification in Figure 2–4 (below) will forbid the non-SC execution of MP.

Figure 2–3 Flagging the incriminated execution

"Flagging the incriminated execution"

let rfe = rf & ext

let fr = rf^-1;co
let fre = fr & ext

let hb = (po | rfe)+

flag ~irreflexive fre;hb as incriminated

Figure 2–4 Forbidding the incriminated execution

"Forbidding the incriminated execution"

let rfe = rf & ext

let fr = rf^-1;co
let fre = fr & ext

let hb = (po | rfe)+

procedure consistent(a,b) =
irreflexive a;b

end

call consistent(fre, hb)

2.1.6 The herd7 tool

The herd7 tool takes as input cat files like the ones shown in Figure 2–3 (above) and Figure 2–4 (above),
and a test like the MP test shown in Figure 1–1 (on page 9). You are encouraged to try out the cat files and
tests shown in this document on the web interface of herd7: virginia.cs.ucl.ac.uk/herd.

The litmus test can be written in a variety of languages, including LISA (the pseudo-code used here), IBM
Power, and ARM assembly.

The herd7 tool then enumerates the candidate executions of the test and decides which are allowed by the
cat specification given as argument.

A cat file is composed as follows:

l A title, as in “Flagging the incriminated execution” in Figure 2–3 (above)

l A list of statements, including:
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o Definitions, such as let rfe = rf & ext

o Procedures, such as consistent

o Checks, such as irreflexive (checks can be flagged or not)

The syntax and semantics of cat is shown in Syntax and Semantics of the cat Language Version 1.2.

2.2 Sequential consistency, per location or not

2.2.1 Under SC

Under SC, incriminated execution would be forbidden. As shown in e.g., Alglave et al1, SC is equivalent
to a specification phrased in terms of events and relations where there is no cycle in the union of the
program order po and the communication relations.

Communication relations are the union of the read-from rf (modelling who reads from where), the
coherence co (the order in which writes to a given address hit the memory), and the from-read fr (relating
a read to all writes to the same address that overwrite the value taken by the read). In cat, defining the
communications com is straightforward:

let com = rf | co | fr

A new identifier com is declared, which is made of the union | of rf, co and fr (recall how fr is defined
in Figure 2–1 (on page 18), and in cat, as rf^-1;co).

Now, SC can be simply phrased as follows:

procedure sc() =
let sc-order = (po | com)+
acyclic sc-order

end

Now a procedure sc is defined, in which a local identifier sc-order is declared that is bound to a relation
made of the transitive closure + of the union of the program order po and the communications com. The
acyclicity of this relation is then required.

To apply this procedure, it needs to be called:

call sc()

This call will forbid the incriminated execution and let all the other executions of Figure 1–3 (on
page 12) pass; a specification of SC has been built in cat as summarized in Figure 2–5 (on the next page).

Now, the message-passing idiommight be used in a weaker model than SC, where the incriminated
execution in 2.1.3 Flagging the non-SC execution of MP (on page 19) would not be forbidden natively. If this
incriminated execution is undesirable, synchronizationmust be used to forbid it. Examples of
synchronization are shown in 2.3.2 Ruling out the incriminated execution (on page 25), 2.4.3 Ruling out the
incriminated execution (on page 29), and 3.6.2 Heterogeneous happens-before (on page 47).

1Jade Alglave. A Shared Memory Poetics. PhD thesis, Universit´e Paris 7, 2010.
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Figure 2–5 An SC specification in cat

"An SC specification"

let fr = rf^-1;co
let com = rf | co | fr

procedure sc() =
let sc-order = (po | com)+
acyclic sc-order

end

call sc()

2.2.2 SC per location

SC per location is a property in most models studied (see e.g., Alglvae et al1), although it is not enforced by
default. The SC per location property gives some intuition with respect to the communications defined in
2.2.1 Under SC (on the previous page) and it appears in the HSA models described in 3 A cat specification of
the HSA memory model (on page 35).

Intuitively, the property SC per location says that a communication relation (the read-from rf, the
coherence co, or the from-read fr) cannot go against the program order. More precisely, SC per location
requires that any sequence of communications cannot go against the program order.

The notion of sequence of communications is formalized as the transitive closure complus of the relation
com:

let complus = (rf | co | fr)+

SC per location simply says the relations complus and po are consistent in the sense of the procedure
consistent defined in 2.1.4 Forbidding the non-SC execution of MP (on page 19). This property forbids
exactly the five scenarios shown in Figure 2–6 (on the facing page) (see e.g., Alglave2 and Alglave et al3. This
is because complus is equal to the union of these relations: rf, co, fr, co;rf, and fr;rf (see e.g.,
Alglave4 for the proof). Thus, each of these five relations goes against the program order po.

1Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, testing, and data-
mining for weak memory. TOPLAS, 36(2), 2014b.
2Jade Alglave. A Shared Memory Poetics. PhD thesis, Universit´e Paris 7, 2010.
3Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation, testing, and data-
mining for weak memory. TOPLAS, 36(2), 2014b.
4Jade Alglave. A Shared Memory Poetics. PhD thesis, Universit´e Paris 7, 2010.

22 | Towards a Formalizationof the HSAMemoryModel in the cat Language, Version1.2



Towards a Formalizationof the HSAMemoryModel in the cat Language, Version1.2 | 23

Figure 2–6 The five idioms forbidden by SC per location

Figure 2–7 (below) formalizes SC per location as follows:

l The from-read fr is defined as done previously, out of which the relation complus is built.

l The relation complusmust be consistent with the program order po (in the formal sense of the
procedure consistent as defined in 2.1.4 Forbidding the non-SC execution of MP (on page 19).

Figure 2–7 (below) shows a whole cat file: the first line "SC per location" is its title, and the second
and third lines define fr and complus. The last line calls the procedure consistent on the arguments
complus and po and gives this statement a name, sc-per-loc, thanks to the as construct. This name
can be used for reference later, for example, in the herd7 tool.

Figure 2–7 Enforcing SC per location

"SC per location"

let fr = rf^-1; co
let complus = (rf | co |fr)+

call consistent(complus, po) as sc-per-loc

Equivalently, SC per location can be phrased as the acyclicity of the union of:

l The communications com, and

l The program order restricted to accesses relative to the same shared variable, a relation called po-
loc

See e.g., Alglave1 for the equivalence proof.

1Jade Alglave. A Shared Memory Poetics. PhD thesis, Universit´e Paris 7, 2010.
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The relation loc gathers pairs of accesses with the same shared variable, or location. Thus the relation
po-loc can be formalized in a straightforward way in cat as the intersection & of the program order po
and the relation loc:

let po-loc = po & loc

SC per location can now be phrased as shown in Figure 2–8 (below). The name SC per location should be
less mysterious now; notice how the program order po as used in SC has been replaced by the more
constrained program order per location po-loc.

Figure 2–8 Enforcing SC per location in a different, equivalent way

"SC per location bis"
let fr = rf^-1; co
let com = rf | co | fr
let po-loc = po & loc

procedure sc-per-loc() =
acyclic po-loc | com

end

call sc-per-loc()

2.3 Using annotations
Using models such as C++1 or HSA2 , this section describes a specification that enforces this property: the
message-passing protocol should work exclusively when the flag is passed via special accesses (for
example, a release-acquire pair as in C++).

In cat, users can define special types of accesses by using tags. The tags that are going to be usedmust
first be declared:

enum memory-order = ’rlx || ’acq || ’rel

This defines an enumeration type memory-order that contains the tags ’rlx (relaxed), ’acq (acquire),
and ’rel (release). These tags can then be used to specify that certain instructions can bear eponymous
annotations.

For example, the following declarations:

instructions W[{’rlx,’rel}]
instructions R[{’rlx,’acq}]

specify that write instructions can only bear the annotations rlx or rel (be relaxed or release accesses),
while read instructions can only bear the annotations rlx or acq (be relaxed or acquire accesses).

2.3.1 Annotating the MP example

The user can then annotate instructions in a LISA litmus test as shown at the left of Figure 2–9 (on the facing
page).

1C++. ISO international standard ISO/IEC 14882:2014(e) — Programming Language C++, 2014.
isocpp.org/std/the-standard
2HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.
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This new annotated test will have almost the same candidate executions as the MP example, whose four
executions are shown in Figure 1–3 (on page 12). The only difference is that the events will bear the
annotations of the instructions they come from. For example, the right side of Figure 2–9 (below) gives the
incriminated execution for MP-relacq (where relacq stands for “release-acquire,” echoing the
annotations used on the accesses to the flag y).

Figure 2–9 Example MP-relacq and its incriminated execution

2.3.2 Ruling out the incriminated execution

The incriminated execution can then be ruled out exclusively when the communication via y is not made
through special accesses, tagged rel for writes, and acq for reads, as shown in Figure 2–10 (below).

In Figure 2–10 (below), the definitions are first recalled of rfe, fr, and fre again. Then a set is defined
called Release (resp. Acquire), which gathers all the events bearing the tag ’rel (resp. ’acq), thanks
to the cat primitive tag2events. The relation rfe-relacq is then built, which is the intersection of the
external read-from rfe and the pairs where the write bears the tag ’rel and the read bears the tag ’acq.
From the relation rfe-relacq, the relation hb-relacq is derived, which is the transitive closure + of the
union of the program order po and the rfe-relacq relation.

Figure 2–10 Ruling out the incriminated execution on MP-relacq

"Ruling out the incriminated execution on MP-relacq"

let rfe = rf & ext
let fr = rf^-1;co
let fre = fr & ext

let Release = tag2events(’rel)
let Acquire = tag2events(’acq)

let rfe-relacq = rfe & (Release * Acquire)
let hb-relacq = (po | rfe-relacq)+

call consistent(fre,hb-relacq) as ComHbCons

Figure 2–11 (on the next page) shows the rfe-relacq and hb-relacq relations on the incriminated
execution of the MP-relacq example (see Figure 2–9 (above)). Note that edges are omitted that result
from transitivity.

Hence calling the procedure consistent on fre and hb-relacq will forbid executions like the
incriminated one studied in Figure 2–9 (above) only when the communication via y is made by a special
release-acquire pair.

2. Aglimpse of cat 2.3 Usingannotations
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Figure 2–11 A release-acquire pair

2.4 Scoped models
Inspired by models such as Nvidia PTX1 and HSA2 , this section describes scopedmodels. In suchmodels,
the programmer has access to how the threads are laid out over the concurrency hierarchy. In cat, scopes
are special tags and the identifier scopes is reserved for them. Here a set of two scopes is defined: ’wi,
which stands for work-item (a thread), and ’system, which stands for the whole system:

enum scopes = ’wi || ’system

Scopedmodels are usually hierarchical, which needs to be specified using the identifiers narrower and
wider. A hierarchy is shown here where system is the widest scope and wi a narrower scope:

let narrower(lvl) = match lvl with
|| ’system -> ’wi

end

The function wider describes the inverse:

let wider(lvl) = match lvl with
|| ’wi -> ’system

end

2.4.1 Scope relations and scope instances

These scopes can then be used to augment LISA programs with a scope tree as shown in Figure 2–12
(below). A scope tree must be in accordance with the hierarchy as defined by the functions narrower and
wider.

Figure 2–12 The example MP-scoped

LISA MP-scoped
{ x = 0; y = 0; }
P0 |P1 ;
w[] x 1 | r[] r1 y ;
w[] y 1 | r[] r2 x ;
scopes: (system (wi P0) (wi P1))
exists(1:r1=1 /\ 1:r2=0)

1Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema, Daniel Poetzl,
Tyler Sorensen, and JohnWickerson. GPU concurrency: Weak behaviours and programming assumptions. In
ASPLOS, 2015.
2HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.
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The scope tree scopes: (system (wi P0) (wi P1)) in Figure 2–12 (on the previous page)
specifies that the threads P0 and P1 reside in two different scope instances of level wi. In contrast, as
specified by the scope tree, there is one scope instance of level system and both threads reside in this
common instance.

Given a scope tag lvl, the cat primitive tag2scope returns the pairs of events that belong to the scope
relation of level lvl with respect to a given scope tree. In other words, it returns the component sr-of(X) of a
given candidate execution X.

Figure 2–13 (below) shows the relations tag2scope(’system) (system for short) and tag2scope
(’wi) (wi for short) in the case of the MP-scoped example (identity pairs have been removed for clarity).

Figure 2–13 Scope relations and instances on MP-scoped

Note that the relations tag2scope(lvl) are equivalence relations. The scope instances at level lvl are
the equivalence classes of the scope relation tag2scope(lvl). In other words, the notions of scope
relation and scope instances differ as follows:

l Scope relation of level lvl: Each scope tag (’system and ’wi) has one unique eponymous scope
relation.

l Scope instances of level lvl: The scope tag ’wi has two scope instances and the scope tag
’system has one instance.

The example contains:

l One scope relation of level wi, viz., the following set containing two pairs: {(a, b), (c, d)}.

l Two scope instances of level wi, viz., the two sets containing the elements of the two pairs from the
above set: {a, b} on one hand, and {c, d} on the other. In other words, the write events coming from
P0 are related in one scope instance of level wi, and the read events from P1 are related in another
instance of level wi.

l One scope relation of level system, viz., the following set containing six pairs: {(a, b), (a, c), (a, d), (b,
c), (b, d), (c, d)}.

l One single scope instance of level system, viz., the set containing all events: {a, b, c, d}. In other
words, all events are related to each other in the scope instance of level system.

2. Aglimpse of cat 2.4 Scopedmodels
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2.4.2 Scope annotations and active instances

Several scopedmodels, including the HSA model shown in 3 A cat specification of the HSA memory model
(on page 35), use annotations to indicate if an instruction should be active at a certain scope level. More
precisely, instructions can bear scope annotations, eponymous of the scope tags that define the concurrency
hierarchy. For example, in this declaration, writes and reads can bear any annotation from the set scopes
previously defined as {’wi, ’system}:

instructions W[scopes]
instructions R[scopes]

Thus the scoped MP example can be augmented with scope annotations as shown in Figure 2–14 (below)
(see the annotations wi and system between square brackets).

Figure 2–14 The example MP-scoped-mit-scope-tags

LISA MP-scoped-mit-scope-tags
{ x = 0; y = 0; }
P0 | P1 ;
w[wi] x 1 | r[system] r1 y ;
w[system] y 1 | r[wi] r2 x ;
scopes: (system (wi P0) (wi P1))
exists(1:r1=1 /\ 1:r2=0)

Then an instruction is active at scope level lvl if:

l it resides in a scope instance of level lvl (in the sense of tag2scope), and

l it bears the scope annotation lvl (in the sense of tag2events).

This leads to the notion of active scope instance, which is a scope instance of level lvl restricted to the
events that are active at level lvl. In cat, this notion is defined as follows:

let active-instance(lvl) =
tag2scope(lvl) & (tag2events(lvl) * tag2events(lvl))

Figure 2–15 (below) shows the active instances at level wi and system for MP-scoped-mit-scope-
tags.

Exceptionally shown here is identity pairs. For instance, active-wi (defined as

active-instance(’wi)) reduces to the pairs (a, a) and (d, d).

Figure 2–15 Active instances at level wi and system for MP
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2.4.3 Ruling out the incriminated execution

Now the incriminated execution can be ruled out only when the communication via the flag y is made
through accesses that belong to the same active scope instance. To do so, the union of all scope instances
over all scopes must be built.

To achieve this, a function union-scopes is built, which given a function f, returns {f (t) | t∈ scopes}.
This function is built using a fold library function which, given a function f , a set S = {e1, e2, . . . , en} and an
element y, returns fold where i1, i2, . . . , in is a permutation of 1, 2, . . . , n. This

function can be implemented in cat as defined in A.1 Definition of fold (on page 54).

The fold can then be used to build union-scopes:

let union-scopes f = fold (fun (s,y) -> f s | y) (scopes,{})

The function union-scopes is then used to build the union of all scoped-rfe over all scopes. Figure 2–
16 (below) shows a cat specification that forbids the incriminated execution of MP-scoped-mit-
scope-tags.

Figure 2–16 Ruling out the incriminated execution on MP-scoped-mit-scope-tags

"Ruling out the incriminated execution on P-scoped-mit-scope-tags"

let rfe = rf & ext
let fr = rf^-1;co
let fre = fr & ext

let scoped-rfe(lvl) = rfe & active-instance(lvl)
let scoped-hb = (po | union-scopes scoped-rfe)+

call consistent(fre,scoped-hb)

In Figure 2–16 (above), a relation scoped-rfe is defined for each scope level lvl, which corresponds to
the external read-from relation rfe (restricted to both extremities that belong to the same active scope
instance of level lvl). From scoped-rfe the scoped-hb relation is derived at each scope level, simply
the transitive closure of the union of the program order po and the scoped read-from scoped-rfe.

Then for each scope level in the scope set scopes (’system and ’wi), fremust be consistent with the
scoped hb relation.

Thus the incriminated execution of the example MP-scoped-mit-scope-tags should be forbidden
at scope level ’wi but not at scope level ’system. Notice how the accesses over y, namely the write b and
the read c, belong to tag2scope(’system) but not to tag2scope(’wi). Therefore (b, c) are in
scoped-rfe(’system), hence in scoped-hb(’system), but not in scoped-rfe(’wi).

2.4.4 Mixing memory order annotations, scopes, and scope annotations

A next natural step is to have a specification that features memory annotations, scopes, and scope
annotations. This is what the HSA model does1. The formalization is shown in 3 A cat specification of the
HSA memory model (on page 35).

1HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.
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2.5 Building the coherence order
In weak memory formalizations, the coherence order is often defined as a total order over all writes to the
same location. This section describes how such a co order is built in cat (see Figure 2–17 (below)). To make
the exposition less abstract, the following definitions will be illustrated on the example 2+2w shown in Figure
2–18 (on page 32).

Before describing this example, the building of co from a high-level point of view is explained. To build co in
cat as a total order over writes the same location:

l From the initial and final writes IW and FW, the relation co0 is built (the union of co-pre and co-post).

l The set of all writes is divided into the subsets relative to the same location. In other words,
equivalence classes of the relation same-loc-writes are built, which gathers pairs of writes to
the same location L.

l All the possible linearisations coL of co0 over writes are written to the same location L, (total orders
extending co0 over the equivalence classes of same-loc-writes).

Figure 2–17 Building the coherence order—cat file building-co.cat

"Building co"

let co-pre = loc & (IW * (W\IW))
let co-post = loc & ((W\FW) * FW)
let co0 = co-pre | co-post

let makeCo(s) = linearisations(s,co0)
let same-loc-writes = loc & (W*W)
let allCoL = map makeCo (classes (same-loc-writes))
let allCo = cross allCoL
with co from allCo

2.5.1 Example 2+2w (below) and 2.5.2 The relation co0 (below) explain the example 2+2w and the building
of co.

2.5.1 Example 2+2w

Example 2+2w consists of threads P0 and P1, which share variables x and y both initialized to 0 (see the
initialization writes ix and iy in the prelude).

The thread P0 writes 2 to x (see the write a on P0) and 1 to y (see the write b on P0). The thread P1 writes
2 to y (see the write c on P1) and 1 to x (see the write d on P1). In the postlude, it is asked if the final value
in both x and y can be 2. Intuitively, this would mean that the last writes to hit the memory are a for x and c
for y.

The initial writes are given by the text of the program: IW {ix, iy}. For final writes, an arbitrary choice
must be made, so FW {} is chosen to explore all possible final states. Note that FW {a, b} would satisfy
the postlude of the program.

2.5.2 The relation co0

The relation co0 gathers the union of co-pre and co-post.

The relation co-pre relates, for a given address x, the initialization write of

x to all the writes of x in the body of the program. In cat, this is:

let co-pre = loc & (IW * (W\IW))
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The pairs of writes are built to the same location (these pairs belong to the relation loc) such that the first
is an initial write (belongs to IW) and the second comes from the body of the program (belongs to the set W
\ IW, which gathers all writes that are not initial writes).

2+2w has IW {ix, iy}, and therefore has co-pre {〈ix, a〉, 〈ix, d〉, 〈iy, b, 〈iy, c〉}. A graphical
representation of co-pre is shown at the top of Figure 2–18 (on the next page).

The relation co-postrelates, for a given address x, the writes within the body of the program to the final
writes. On the example, co-post {} in cat is:

let co-post = loc & ((W\FW) * FW)

The pairs of writes are built to the same location (loc) such that the first is not a final write (belongs to W \
FW) and the second is a final write (belongs to FW). 2+2w has co-post {} because FW was chosen to be

empty.
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Figure 2–18 How co is built as a total order over writes to the same location, on 2+2w

2.5.3 Linearisations

Recall that a goal is to build co as a total order over writes to the same location. In cat, all total orders on a
certain set of events can be generated with the primitive linearisations(S,R) that takes two arguments:
a set of events S and a relation R. The primitive builds RS , the restriction of R to S. If RS is acyclic, the call to
linearisations will return the set of all total orders that extend RS. If, for example, RS has a cycle, the primitive
returns the empty set.
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Hence, assuming SL to be the set of all write events to location L, the set of all possible coL by the call
linearisations(SL,co0) can be generated:

let makeCo(s) = linearisations(s,co0)

2.5.4 Writes to the same location

It has been said that co should be total over all writes sharing the same variable. Thus the relation same-
loc-writes is built, which gathers the pairs of writes to the same location as follows:

let same-loc-writes = loc & (W*W)

Note that same-loc-writes is an equivalence relation.

Now the set of all possible coherence orders (all the unions of all the possible coL orders for all locations L)
will be generated. This is done by using another cat primitive, classes(r), which takes an equivalence
relation r as argument and returns its equivalence classes.

2.5.5 The set of all possible coherence orders coL for all locations L

The set of all possible coherence orders coL for all locations L is built as follows:

let allCoL = map makeCo (classes (same-loc-writes))

The function map takes as argument a function f (here makeCo) and a set {e1, . . . , en} (here classes
(same-loc-writes), and returns the set {f (e1), . . . , f (en)}. This function is not a primitive; it can be
implemented in cat and is defined in A.2 Definition of map (on page 54).

Here the set W of all writes is divided into blocks such that each block is relative to one given shared
variable; this is what the call classes (same-loc-writes) does. Example 2+2w has classes
(same-loc-writes) {{ix, a, d}, {iy, b, c}}.

Then for each block of this partition (thanks to the call to map makeCo), the set of all its possible coherence
orders is created. Example 2+2w has for the variable x: linearisations({ix, a, d}, co0) =
{[ix; a; d], [ix; d; a]}.

A list notation is used for a total order. For example, [ix; a; d] stands for the total order {〈ix, a〉,
〈a, d〉, 〈ix, d〉}.

In summary, allCoL is a set of set of relations, each element being the set of all possible coL orders for a
specific L. Example 2+2w has allCoL {{ [ix; a; d], [ix; d; a]}, {[iy; b; c, fy],
[iy; c; b, fy]}}.

2.5.6 Cross product

All possible unions of the coL for all possible locations Lmust still be generated. This can be done with the
function cross, which takes a set of sets S = {S1, S2, . . . , Sn} as argument and returns all possible unions
built by picking elements from each of the Si:

This function is not a primitive; it can be implemented in cat as defined in A.3 Definition of cross (on
page 54). The set of all possible coherence orders is generated by:

let allCo = cross allCoL
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More precisely, the variable allCo is bound to a value that is the set of all possible coherence orders.
Example 2+2w has allCo = {{[ix; a; d], [iy; b; c]}, {[ix; a; d], [iy; c; b]},
{[ix; d; a], [iy; b; c]}, {[ix; d; a], [iy; c; b]}}.

2.5.7 All total orders over writes to the same location

To account for all possible coherence orders, this set allComust be enumerated over. The instruction
with v from S will, for each e in S, evaluate the rest of the specification in an extended environment that
binds v to e. cowould write with co from allCo. All possible co picked in the set allCo of all coherence
orders is enumerated.

Figure 2–19 (below) shows one possible choice of co amongst all the possibilities given by the set allCo:
{[ix; d; a], [iy; b; c]} was picked. Note that this candidate execution corresponds to the
postlude of the test shown in Figure 2–18 (on page 32) and is in violation of SC in that it shows a cycle in the
union of program order and communications.

Figure 2–19 One possible choice of co for 2+2w

2.5.8 Benefiting from this construction of the coherence order co

To benefit from this construction of the coherence order co, all the previous cat specifications (see Figure
2–3 (on page 20), Figure 2–4 (on page 20), Figure 2–5 (on page 22), Figure 2–7 (on page 23), Figure 2–8 (on
page 24), Figure 2–10 (on page 25), and Figure 2–16 (on page 29), should include the cat file building-
co.cat shown in Figure 2–17 (on page 30).

This can be done easily in cat using the include construct. All previous cat specifications should mention
the following statement:

include "building-co.cat"

Similarly, all cat specifications that use the procedure consistent (as shown in Figure 2–7 (on page 23),
Figure 2–10 (on page 25), and Figure 2–16 (on page 29)) must include a library file where the procedure is
defined.

Moreover, the specifications that use annotations (e.g., Figure 2–10 (on page 25)) or scopes (e.g., Figure 2–
16 (on page 29)) must include a file where these annotations and scopes are defined.
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3. A cat specification of the HSA memory model
This section details a cat specification of the HSA memory model1 .

3.1 Features and structure of the HSA model

3.1.1 Features of the HSA model

Features of the HSA model2 include:

l Accesses can be annotated to form special pairs. As described in 3.2 Declaring tags, scopes, and
instructions for HSA (on the next page), these annotations are typically used to:

o Forbid the incriminated execution of the message-passing idiom by forming special, inter-
thread communication pairs.

o Restore a strong model such as SC.

l Threads belong to scopes and are distributed along a concurrency hierarchy as described in 3.2
Declaring tags, scopes, and instructions for HSA (on the next page).

Note that this document omits considerations about dependencies (address, data, or control) between
accesses, or about read-modify-write accesses, although the tool does handle them. The sizes of accesses
are not considered. Moreover, to make the exposition a bit more light, considerations about branches and
fences are omitted, although the complete HSA model handles them.

3.1.2 The structure of the HSA model

The structure of the HSA model as described in the HSA documentation is roughly as follows:

l Enforce SC per location (see 3.5.3 Consistency of coh and po (on page 45)) and 2.2.2 SC per location
(on page 22)).

l Forbid the incriminated non-SC execution of the message-passing idiom (see 2.1 Flagging and
forbidding the non-SC execution of MP (on page 17) and Figure 2–2 (on page 18) via a special
happens-before relation (see 3.6.2 Heterogeneous happens-before (on page 47)). This relation is
special in two ways:

o The extremities (the write and the read) must be annotated adequately as described in 2.3
Using annotations (on page 24).

o The communicationmust be at the right scope level as described in 2.4 Scopedmodels (on
page 26).

l Provide means to restore SC at each scope level (see 3.7 SC orders (on page 48)).

l Flag racy executions to forbid potentially racy programs (see 3.8.2 Races (on page 51)).

3.1.3 The relations that are built

The relations that are built in the three models follow the model of the HSA documentation:

1HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.
2HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.
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1. The coh relation gathers the communications over shared variables. The name coh stands for
coherence, although coh is not entirely identical to the coherence co0 nor to the traditional total
order co over writes to the same location (as shown in 2.5 Building the coherence order (on
page 30)). coh is used to:

o Enforce SC per location (see 2.2.2 SC per location (on page 22))

o Build a rel-acq relation (see 2.3 Using annotations (on page 24))

2. The hhb (heterogeneous happens-before) relation rules communications through annotated
accesses. hhb is used to:

o Forbid the incriminated execution of the message-passing scenario (see 2 A glimpse of cat
(on page 16))

o Rule out programs with potentially racy executions

The SC relations provide a mean to restore SC (see 2.2.1 Under SC (on page 21)) at each scope via special
synchronizing accesses.

3.1.4 Organization of the remaining sections

The remaining sections are organized as follows:

l 3.2 Declaring tags, scopes, and instructions for HSA (below) – Declarations of annotations and
scopes

l 3.3 Two running examples (on page 38) – Running examples

l 3.4 Utilities over scopes (on page 41) – Auxiliaries to handle the scope hierarchy

l 3.5 Coherence coh (on page 43) – Building the coh relation

l 3.7 SC orders (on page 48) – Building the SC relations

l 3.6 Heterogeneous happens-before hhb (on page 45) – Building the hhb relation

l 3.8 Data races (on page 49) – One treatment of races

3.2 Declaring tags, scopes, and instructions for HSA
Figure 3–2 (on page 38) summarizes the definitions and notions of this section.

3.2.1 Scopes

The HSA model is a scopedmodel. Threads are called work-items (wi), which can be gathered into waves
(wave), work-groups (wg), agents (agent), and systems (system), with each scope being narrower than the
next.

3.2.2 Accesses

Accesses, or operations, can be ordinary or atomic, thus can bear an annotation ordinary or an
annotation atomic. However, accesses can be either ordinary or atomic, but not ordinary and atomic at the
same time.

All ordinary (resp. atomic) accesses are gathered in the set Ordinary (resp. Atomic) using the cat
primitive tag2events (see 2.3.2 Ruling out the incriminated execution (on page 25)).
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Accesses can bearmemory order annotations 3.2.3 Memory order annotations (below) and scope
annotations (see 3.2.4 Scope annotations (below)). Thus programs can be written like the example MP-
annots shown in Figure 3–1 (below).

Figure 3–1 Mixing both memory orders and scope annotations, on MP

LISA MP-annots
{ x = 0; y = 0; }
P0 | P1 ;
w[ordinary,rlx,wi] x 53 | r[atomic,scacq,system] r1 y ;
w[atomic,screl,system] y 1 | r[ordinary,rlx,wi] r2 x ;
scopes: (system (wi P0) (wi P1))
exists(1:r1=1 /\ 1:r2=0)

3.2.3 Memory order annotations

Accesses can bear a memory order, much like in C++, giving them various ordering properties. The accesses
can be relaxed (rlx), acquire (scacq), release (screl), and both acquire and release (scar). In addition:

l Ordinary accesses can only be relaxed (bear the tag rlx).

l Atomic accesses can bear any memory order tag.

l Reads can be acquire or acquire-release, but not release.

l Writes can be release or acquire-release, but not acquire.

The set of events that are both release and acquire-release are gathered in the Release set, and the set
of events that are both acquire and acquire-release are gathered in the Acquire set. Events that are
either in the Release or Acquire sets are called Synchronizing.

3.2.4 Scope annotations

Accesses can also bear a scope annotation, eponymous of the ones used to describe the concurrency
hierarchy. Ordinary (and thus relaxed) accesses can bear only the work-item wi tag, while atomic accesses
can bear any scope tag.

Similar to the information described in 2.4 Scopedmodels (on page 26), using scope tags on events will
indicate if they are active at a scope instance of level lvl as formalized by the active-instance notion
described 3.4 Utilities over scopes (on page 41). Note that the active-instance notion presented here
is a generalization of the eponymous notion described in 2.4 Scopedmodels (on page 26).

3.2.5 All together

Figure 3–2 (on the next page) summarizes the following information:

l The scope tags are declared scopes and the associated hierarchy via the functions narrower and
wider.

l Two sorts of annotations are declared: operation-kind, which can be ordinary or atomic,
and memory-order, which can be rlx, scacq, screl, or scar.

l The annotations that accesses can bear.

l The build of certain sets of events (Release is the set of all events tagged screl or scar).
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Figure 3–2 Declaring tags, scopes, and instructions for HSA

"Declaring tags, scopes and instructions for HSA"

enum scopes = ’wi || ’wave || ’wg || ’agent || ’system

let narrower(s) = match s with
|| ’system -> ’agent
|| ’agent -> ’wg
|| ’wg -> ’wave
|| ’wave -> ’wi
end

let wider(s) = match s with
|| ’agent -> ’system
|| ’wg -> ’agent
|| ’wave -> ’wg
|| ’wi -> ’wave
end

enum operation-kind = ’ordinary || ’atomic

enum memory-order = ’rlx || ’scacq || ’screl || ’scar

enum own = ’read-only || ’read-write

instructions R[{’ordinary},{’rlx},{’wi},own]
instructions R[{’atomic},{’rlx,’scacq,’scar},scopes,own]
instructions W[{’ordinary},{’rlx},{’wi},{’read-write}]
instructions W[{’atomic},{’rlx,’screl,’scar},scopes,{’read-write}]
instructions RMW[{’atomic},memory-order,scopes]
instructions F[{’scacq,’screl,’scar},scopes]

let Release = tag2events(’screl) | tag2events(’scar)
let Acquire = tag2events(’scacq) | tag2events(’scar)
let Synchronizing = Acquire | Release
let Ordinary = tag2events(’ordinary)
let Atomic = tag2events(’atomic)
let Read-only = tag2events(’read-only)
let Read-write = tag2events(’read-write)

3.3 Two running examples
The running examples used are the tests isa2 and sb, shown below.

3.3.1 Example 1: isa2

Example test isa2 is shown in Figure 3–3 (below). It is a distributed variant of the message-passing idiom MP
described in 1 Preamble on axiomatic models (on page 9) and 2 A glimpse of cat (on page 16).

Figure 3–3 Example test isa2

LISA ISA2
{ }
P0 | P1 | P2 ;
w[ordinary,rlx,wi] x 53 | r[atomic,scacq,agent] r0 y | r[atomic,scacq,system] r0 z ;
w[atomic,screl,wg] y 1 | w[atomic,screl,system] z 1 | r[ordinary,rlx,wi] r1 x ;
scopes: (agent (wg P0 P1) (wg P2))
exists (1:r0=1 /\ 2:r0=1 /\ 2:r1=0)
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Test isa2 is made of threads P0, P1, and P2, which communicate via shared variables x, y, and z, all
initialized to 0 (as indicated by the empty preamble of the test).

l P0 has an ordinary relaxed write of x with value 53 at level wi, followed in program order by an
atomic release write of y with value 1.

l P1 has an atomic acquire read of y, which places the value read into a register r0 private to P1,
then an atomic release write of z with value 1.

l P2 has an atomic acquire read of z, which places the value read into a register r0 private to P2,
then an ordinary relaxed read of x, which places the value read into a register r1 private to P2.

Figure 3–4 (below) shows a particular execution candidate of the test isa2. More precisely, an rf relation
that satisfies the postlude exists (1:r0=1 /\ 2:r0=1 /\ 2:r1=0) is considered. This means that
an execution is selected where the read from y by the thread P1 reads the value 1, which is stored to y by
the thread P0, i.e., (b, c) ∈ rf. Similarly, (d, e) ∈ rf is selected. Finally, it is considered that the event f
reads the initial value of x, i.e., (ix, f ) ∈ rf.

Figure 3–4 An execution candidate of the test isa2

Recall the notion of scope instance, which is derived from the scope tree of a test: two events belong to the
same scope instance of level lvl when they come from threads that belong to the level lvl with respect to
a scope tree.

For example, in the test isa2, the threads P0 and P1 belong to the same instance of level work-group,
and P2 is in its own instance of level work-group. All three threads are in the same instance of level
agent. Figure 3–5 (on the next page) shows the scope instances at level work-group for the isa2 test.
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Figure 3–5 Two distinct scope instances at level work-group for the isa2 test

3.3.2 Example 2: sb

Example test sb is shown in Figure 3–6 (below).

Figure 3–6 A store buffering example (test sb)

LISA SB
{ }
P0 | P1 ;
w[atomic,scar,wg] x 1 | w[atomic,scar,wg] y 1 ;
r[atomic,scar,wg] r0 y | r[atomic,scar,wg] r0 x ;
scopes: (wg (wi P0) (wi P1))
exists (0:r0=0 /\ 1:r0=0)

sb has threads P0 and P1, which communicate via shared variables x and y, both initialized to 0. According
to the scope tree, the two threads belong to the same instance of level work-group, but each thread is in
its own scope instance of level work-item.

l P0 has an atomic write of x with value 1, tagged wg, followed in program order by an atomic read of
y tagged wg.

l P1 writes y then read x, with similar annotations to that of P0. Note that all accesses bear the scar
annotations.

The postlude of the test asks if it is possible to have an execution of sb where the two reads take their
values from the initial state as shown in Figure 3–7 (on the facing page).

Figure 3–8 (on the facing page) shows another illustration of the notion of scope instance, giving the only
scope instance of level work-group for sb.
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Figure 3–7 An execution candidate of the test sb

Figure 3–8 A unique scope instance at level work-group for the test sb

3.4 Utilities over scopes
As a scopedmodel, HSA needs a few utilities to manipulate the scopes. For a given scope tag lvl, the
following are defined:
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l The set active-events (see 3.4.1 The set active-events (below)), which intuitively gathers the
events that are active at level lvl (that bear a scope tag of level lvl or wider)

l The relation active-instance (see 3.4.2 The relation active-instance (below)), which restricts the
scope instances of level lvl (in the sense of tag2scope) to the events that are active at level lvl
(to the events that belong to the set active-events)

Figure 3–9 (below) shows these definitions and recalls the function union-scopes (see 2.4.3 Ruling out
the incriminated execution (on page 29)), which returns, for a function f given as argument, the union of the
sets (f s) for s ranging over the possible scopes.

3.4.1 The set active-events

The set active-events gathers, given a scope level lvl, all the events that bear the scope tag lvl, or a
wider scope tag in the sense of the function wider (see Figure 3–2 (on page 38)). For example, at level
agent, the function active-events gathers all events with scope tag agent and scope tag system.

Example on isa2. For the set active-events(’wg), the event b bears the scope tag wg, the event c
bears the scope tag agent, and the events d and e both bear the tag system. Since agent and system
are wider than wg, active-events(’wg) = {b, c, d, e}. For the set active-events(’agent),
the event c bears the tag agent, and the events d and e both bear the tag system, thus active-events
(’agent) = {c, d, e}.

Figure 3–9 Utilities for HSA scopes

"Handling the scope hierarchy"

let rec active-events(lvl) = match lvl with
|| ’system -> tag2events(lvl)
|| _ -> tag2events(lvl) | active-events(wider(lvl))
end

let active-instance(lvl) =
let events = active-events(lvl) in
tag2scope(lvl) & (events * events)

let union-scopes f = fold (fun (s,y) -> f s | y) (scopes,{})

Example on sb. For the sets active-events(’wi) and active-events(’wg), all events bear the
tag wg, which is wider than wi, thus active-events(’wi) = active-events(’wg) = {a, b, c,
d}.

3.4.2 The relation active-instance

The relation active-instance gathers, given a scope level lvl, the pairs of events such that:

l The events come from the same scope instance (from threads that belong to the scope lvl in the
scope tree). This is what the call to tag2scope(lvl) in Figure 3–9 (above) does.

l The events are both active at level lvl (both bear the scope tag lvl or wider). This is what the local
definition events in Figure 3–9 (above) does.
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Example on isa2. Figure 3–10 (below) shows the relations active-instance for the work-group and
agent levels in test isa2. Note that the events a and b at the left of Figure 3–10 (below) are not related by
active-instance(’wg), although these two events belong to a common scope instance of level
work-group (see Figure 3–5 (on page 40)). This is due to a being tagged by wi (work-item), a level that is
narrower than wg (work-group), not wider. Note also that the events d and e are related by active-
instance(’agent) because these events belong to a common scope instance at level agent, which
happens to comprise all events, and being tagged system, which is wider than agent.

Figure 3–10 The active-wg and active-agent relations of the isa2 test

Example on sb. Figure 3–11 (below) shows the relations active-instance for the levels work-item wi
and work-group wg.

Figure 3–11 The active-wi and active-wg relations of the sb test

3.5 Coherence coh

3.5.1 Definition

For a given location L, the coherence order coL is defined as a total order on all memory writes (gathered in
the predefined cat set W) to location L. The single coherent order co is the union of all the coL for all
locations. This is identical to what was built in 2.5 Building the coherence order (on page 30).

Figure 3–12 (on the next page) gathers the statements relative to the coherence order co. co0 is defined as
in 2.5 Building the coherence order (on page 30) (the union of co-pre and co-post). Thus co0 relates, for
each shared variable x, the initial write to x to the writes of the body relative to x (co-pre), and the writes of
the body relative to x to the final write to x (co-post).
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Figure 3–12 (below) shows where co is built. As done in 2 A glimpse of cat (on page 16), the from-read
relation fr is built as the sequence of the inverse of read-from (rf^-1) and the relation co just picked.
Then coh is defined as the transitive closure of communications as defined in 2 A glimpse of cat (on
page 16):let coh = (rf|co|fr)+. In other words, coh is the transitive closure (see the use of +) of
the union | of read-from rf, coherence co and from-read fr.

Figure 3–12 Building coh

"Coherence 2"

let makeCohL(s) = linearisations(s,co0)
let same-loc-writes = loc & (W*W)
let allCoL = map makeCohL (classes (same-loc-writes))
let allCo = cross allCoL
with co from allCo

let fr = rf^-1; co
let coh = (rf|co|fr)+

call consistent(coh,po) as CohPoCons

3.5.2 Examples on isa2 and sb

On examples isa2 and sb, execution candidates are shown that exhibit a certain choice of coh, and thus of
mincohWR (or rf). These execution candidates are in violation of SC (see 2.2.1 Under SC (on page 21)).

Example on isa2. Figure 3–13 (on the facing page) shows an execution candidate of the test isa2, viz., a
certain rf (or mincohWR) relation and a certain coh relation.

Figure 3–13 (on the facing page) shows a candidate execution that satisfies the postlude exists
(1:r0=1 /\ 2:r0=1 /\ 2:r1=0). Thus a candidate execution is shown where the read from y by the
thread P1 reads the value 1, which is stored to y by the thread P0, i.e., (b, c) ∈ rf. Similarly, (d, e) ∈ rf is
selected. Finally, it is considered that the event f reads the initial value of x, which is pictured by an rf arrow
from the initial write of x to event f (or alternately (f, a) ∈ fr).

Some coh relation is selected that passes the coherence statements of Figure 3–12 (above). For clarity,
Figure 3–13 (on the facing page) does not show the complete coh relation but a sub-relation (edges that
can be deduced by transitivity are omitted). The significant pairs of this coh relation are (b, c) and (d, e) ∈
coh (which are the same as inter-thread rf pairs), and (f, a) ∈ coh which originates from event f reading
the initial value of x.
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Figure 3–13 The non-SC execution candidate of test isa2

Example on sb.The postlude (0:r0 = 0 /\ 1:r0 = 0) corresponds to the rf and coh relations
shown in Figure 3–14 (below).

Figure 3–14 The non-SC execution candidate of test sb

3.5.3 Consistency of coh and po

The consistency of coh and po can then be checked:

call consistent(coh,po) as CohPoCons

Recall that consistent(a,b) checks that the sequence a;b is irreflexive (a does not go against b).

3.6 Heterogeneous happens-before hhb
This section describes the definitions relative to the hhb relation. Figure 3–15 (on the next page) shows a
fragment of the specification where considerations about fences are omitted for brevity. The complete
specification closely follows the text of the documentation.

The relation hhb is built as the transitive closure of the union of the program order po and the union of the
scoped synchronization order sso at all scopes. Section 3.6.1 Scoped synchronization order (on the next
page) describes how sso is built and illustrates it on example isa2. Section 3.6.2 Heterogeneous happens-
before (on page 47) describes hhb in more detail.

3. A cat specificationof the HSAmemorymodel 3.6 Heterogeneous happens-before hhb



3. A cat specificationof the HSAmemorymodel 3.6 Heterogeneous happens-before hhb

3.6.1 Scoped synchronization order

Scoped synchronization order formalizes release-acquire synchronization, with scope restrictions.

Figure 3–15 A treatment of hhb

"Heterogeneous happens-before"

let rel-acq =
((W & Release) * (R & Acquire)) & coh

| ((F & Release) * Acquire) &
((po & (_ * W)); coh; (po? & (R * _)))

| (Release * (F & Acquire)) &
((po? & (_ * W)); coh; (po & (R * _)))

let sso s = active-instance(s) & rel-acq

let hhb = (po | union-scopes sso)+
>irreflexive hhb as HhbCons
call consistent (hhb,coh) as HhbCohCons

Definition. As shown in Figure 3–2 (on page 38), sets of tagged events are built as follows:
let Release = tag2events(’screl) | tag2events(’scar)
let Acquire = tag2events(’scacq) | tag2events(’scar)
let Synchronizing = Acquire | Release

Note that the screl, scacq, and scar tags apply to atomic operations only. As a consequence, the above
sets regroup atomic operations only.

The scoped synchronization order is defined for a scope tag lvl as the relation rel-acq, defined below,
intersected with the active-instance relation (see 3.4 Utilities over scopes (on page 41)). As shown in
Figure 3–13 (on the previous page), the relation rel-acq is built first, which gathers the pairs (e1, e2) of
accesses such that e1 is a write release, e2 a read acquire, and e1, e2) ∈ coh.

To build the scoped synchronization order, the relation rel-acqmust be restricted to events that are
within the same active scope instance of level lvl and bearing the scope tag lvl or a wider one:

let sso s = active-instance(s) & rel-acq

Example on isa2. Figure 3–16 (on the facing page) shows the scope synchronization orders for scopes
agent and work-group for the test isa2.

The pair (b, c) is in sso-wg because b is a write release (tag screl), c is a read acquire (tag scacq), and
(b, c) ∈ coh (see Figure 3–10 (on page 43)).

Furthermore, events b and c are in active-instance(’wg) as shown by the pair (b, c) ∈ active-wg
in Figure 3–10 (on page 43). Indeed they are both in the same scope instance of level work-group, and
both bear a scope tag of level wg (this is the case for event b) or wider (c bears agent, which is wider than
wg), hence (b, c) ∈ sso-wg, since sso-wg was defined as the intersection of the relations rel-acq and
active-wg.
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Figure 3–16 Scope synchronization orders for scopes agent (sso-agent) and work-group (sso-wg)

Differences between the simple release-acquire in 2.3 Using annotations (on page 24) and the HSA
one are shown in Figure 3–17 (below). The figure shows an execution of a test similar to MP-annots with
an extra thread (at the left of the figure), which does an atomic release write of y with value 1 at scope level
system.

l In the simpler setup shown in 2.3 Using annotations (on page 24), where rel-acq builds on read-
from only, only the pair (c, d) belongs to rel-acq.

l In the more complete setup of HSA, both pairs (c, d) and (a, d) belong to rel-acq, since in this case,
rel-acq builds on coh.

Figure 3–17 Differences between the simple rel-acq in 2.3 Using annotations and the HSA one

3.6.2 Heterogeneous happens-before

Definition. Following the HSA document, the HSA happens-before order hhb is defined as the transitive
closure of the union of the program order and of the union of scope synchronization orders at all scope
levels using the function union-scopes:

let union-scopes f = fold (fun (s,y) -> f s | y) (scopes,{})

let hhb = (po | union-scopes sso)+

Validity conditions. The HSA document defines three validity conditions on hhb in that the hhb relation
must be:

l Acyclic (equivalently irreflexive, as hhb is transitive)

l Consistent with coh

l Consistent with sequentially consistent orders (see 3.7 SC orders (on the next page))

The first two conditions are expressed as follows:
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irreflexive hhb as HhbCons
call consistent (hhb,coh) as HhbCohCons

For the test isa2: The execution shown in Figure 3–13 (on page 45) gets the hhb relation shown in Figure
3–18 (below). Edges that result from the transitivity of hhb are omitted. Figure 3–18 (below) shows a case of
inconsistency of hhb and coh: (a, f) ∈ hhb and (f, a) ∈ coh.

Figure 3–18 The HSA happens-before relation for test isa2

3.7 SC orders
Figure 3–19 (below) shows a specification of SC orders.

A relation is built between synchronizing events that belong to the same active scope instance of level lvl.
Then at each level lvl, a relation Rlvl is built as the union of hhb and coh intersected with this relation.
Then the SC relation at level lvl is the union of Rlvl and the relation Rlvl, for lvl’ narrower than lvl
(in the the hierarchy of scopes defined in Figure 3–2 (on page 38).

This treatment is equivalent to unrolling the forall loop as follows (only the unrolling for the two tags wi
and wave are shown):

let SWI = makeSCscope(’wi,0)
acyclic SWI as ScCons
let SWAVE = makeSCscope(’wave,SWI+)
acyclic SWAVE as ScCons

Figure 3–19 Specifications of SC orders

"SC orders 2"

let sync-instances(lvl) =
(Synchronizing * Synchronizing) & active-instance(lvl)

let makeSCscope(lvl,lower) =
(lower|(hhb | coh)) & sync-instances(lvl)

let rec SClower(lvl) = match lvl with
|| ’wi -> makeSCscope(’wi,0)
|| _ -> let S’ = SClower(narrower(lvl)) in

makeSCscope(lvl,S’+)
end

forall lvl in scopes do
acyclic (SClower(lvl)) as ScCons

end
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3.7.1 Example on sb

On sb, the SC order at level wg will forbid the non-SC execution shown in Figure 3–6 (on page 40). The test’s
scope tree states that the two threads of the test are in the same scope instance of level work-group. As
a result, all events, which are synchronizing and tagged by the scope tag wg, reside in the same sync
instance of level work-group. Thus Figure 3–20 (below) shows a contradiction between a tentative work-
group SC order SWG and coh.

Figure 3–20 Contradiction of the work-group SC order and coh

In contrast, the SC orders at level wi will not forbid the non-SC execution of sb, as shown in Figure 3–21
(below). Note that the relation SWI consists of two independent orders, one per scope instance of level
work-item. Each of these SWI orders is consistent with and equal to the local po and with the local view of
coh (which is the empty relation).

Figure 3–21 A successful ordering of the two work-item scope instances

3.8 Data races
Finally, the HSA model declares as undefined programs that have races. Race treatment is summarized in
Figure 3–22 (on the next page).

A race is a pair of accesses, e1 and e2, that represent a conflict such that neither (e1, e2) nor (e2, e1) are
ordered by the happens-before relation defined in 3.6.2 Heterogeneous happens-before (on page 47).

3. A cat specificationof the HSAmemorymodel 3.8 Data races



3. A cat specificationof the HSAmemorymodel 3.8 Data races

Figure 3–22 A treatment of races

"HSA races"

let at-least-one(S) = (S * _ | _ * S)

let ordinary-conflicts =
loc & at-least-one(W) & at-least-one(Ordinary)

let matches = union-scopes active-instance

let special-conflicts =
(loc & at-least-one(W) & (Atomic * Atomic)) \ matches

let conflicts =
((ordinary-conflicts|special-conflicts) & ext) \ at-least-one(IW)

let hsa-race = conflicts \ (hhb | hhb^-1)

flag ~empty hsa-race as undefined

3.8.1 Conflicts

Conflicts are two accesses, e1 and e2, that conflict if:

l They are relative to the same address (they are in the loc relation).

l They belong to different threads (they are in the ext relation).

l At least one is a write (gathered in the set W). Notice that at-least-one(S) is implemented as
the union of pairs such that one extremity belongs to the set S and the other can be anything
(belongs to __ ).

l None of them is an initialization write (gathered in the set IW).

l Their scope instances do notmatch (they do not belong to the same active instance as modeled by
the relation matches).

The HSA document has two definitions of conflicts: ordinary and special.

Ordinary conflicts. Ordinary conflicts are “Two operations X and Y conflict, if they access one or more
common byte locations, at least one is a write, and at least one is an ordinary data operation.” To paraphrase
the definition:

let at-least-one(S) = (S * _) | (_ * S)

let ordinary-conflicts = loc & at-least-one(W) & at-least-one(Ordinary)

The predefined relation loc is used that relates accesses to the same location, and the predefined set of
events W (the set of write operations). The set Ordinary is the set of ordinary data operations obtained
by tag2events(’ordinary).

Special conflicts. Special conflicts occur between accesses to the same location, both of them being
atomic, such that at least one is a write and whose scope instances do notmatch.

The relation matches is the union of all active instances over all possible scopes. In cat, this is written as
follows (Atomic being the set of events bearing the annotation ’atomic):

let matches = union-scopes active-instance
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let special-conflicts =
(loc & at-least-one(W) & (Atomic * Atomic)) \ matches

The function union-scopes that returns the union of the application of a function on all scope tags is
defined in 2.4.3 Ruling out the incriminated execution (on page 29) and 3.6.2 Heterogeneous happens-
before (on page 47).

To paraphrase the definition of conflict:

let conflicts =
((ordinary-conflicts|special-conflicts) & ext) \ at-least-one(IW)

Possible omissions in the documentation. The definition of conflicts in the HSA documentation1 lacks
several conditions, which have been added to the definitions above:

l Accesses must be by different threads, which are considered in the definition of conflicts above by
the means of the predefined ext relation that relates operations by different threads.

l Initial writes (gathered in the predefined set IW) do not contribute to conflicts.

To see why these conditions are needed, see Figure 3–23 (below), which shows an execution of the test
MP+annots (see Figure 3–1 (on page 37)). Without these conditions, the following could occur:

l A conflict of event a with itself.

l Conflicts of events a and d with the init write event ix.

Figure 3–23 Non-existent conflicts and races

3.8.2 Races

Races are conflicts that are not ordered by HSA happens-before in either direction:

let hsa-race = conflicts \ (hhb | hhb^-1)

The postfix r^-1 operator that evaluates to the inverse of relation r is used.

1HSA Foundation. HSA Platform System Architecture Specification Version 1.2, 2 May 2018.
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Possible omissions in the documentation. The definition of races in the HSA documentation lacks this
condition: accesses must be ordered by hhb one way or the other, which is considered in the definition of
races above by the means of hhb^-1.

Figure 3–23 (on the previous page) shows why this condition is needed. Without the condition on hhb^-1, a
race occurs from event d to event a, as those are ordered by hhb^-1.

Signaling undefined executions can be done with the flag mechanism:

flag ~empty races as Undefined

This will flag as Undefined any execution where the set of races is not empty.
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A. Three cat7 library functions

A.1 Definition of fold
Given a function f , a set S = {e1, e2, . . . , en} and an element y, the call fold f (S, y) returns the value f (ei1 , f
(ei2 , . . . f (ein , y))), where i1, i2, . . . , in is a permutation of 1, 2, . . . , n:

let fold f =
let rec fold_rec (es,y) = match es with
|| {} -> y
|| e ++ es -> fold_rec (es,f (e,y))
end in
fold_rec

A.2 Definition of map
Given a function f and a set S = {e1, . . . , en}, the call map f S returns the set {f (e1), . . . , f (en)}. This function
can be implemented directly or more concisely by calling the fold function:

let map f = fun es -> fold (fun (e,y) -> f e ++ y) (es,{})

A.3 Definition of cross
The function cross takes a set of sets S = {S1, S2, . . . , Sn} as argument and returns all possible unions built
by picking elements from each of the Si:

Note that if S is empty, then cross should return one relation exactly: the empty relation (the neutral
element of the union operator). This choice for cross(∅) is natural when cross is defined inductively:

In this specification, cross(S1 ++ S) is built by building the set of all unions of one relation e1 picked in S1
and of one relation t picked in cross(S). From this inductive specification for cross, the following concise
code is written:

let rec cross S = match S with
|| {} -> { 0 }
|| S1 ++ S ->

let yss = cross S in
fold
(fun (e1,r) -> map (fun t -> e1 | t) yss | r)
(S1,{})

end
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B. Bell and cat files for the HSA model

B.1 Bell file
"Declaring tags, scopes and instructions for HSA"

enum scopes =’wi || ’wave || ’wg || ’agent || ’system

let narrower(s) = match s with
|| ’system -> ’agent
|| ’agent -> ’wg
|| ’wg -> ’wave
|| ’wave -> ’wi
end

let wider(s) = match s with
|| ’agent -> ’system
|| ’wg -> ’agent
|| ’wave -> ’wg
|| ’wi -> ’wave
end

enum operation-kind = ’ordinary || ’atomic

enum memory-order = ’rlx || ’scacq || ’screl || ’scar

enum own = ’read-only || ’read-write

instructions;R[{’ordinary},{’rlx},{’wi},own]
instructions;R[{’atomic},{’rlx,’scacq,’scar},scopes,own]
instructions;W[{’ordinary},{’rlx},{’wi},{’read-write}]
instructions;W[{’atomic},{’rlx,’screl,’scar},scopes,{’read-write}]
instructions RMW[{’atomic},memory-order,scopes]
instructions F[{’scacq,’screl,’scar},scopes]

let Release = tag2events(’screl) | tag2events(’scar)
let Acquire = tag2events(’scacq) | tag2events(’scar)
let Synchronizing = Acquire | Release
let Ordinary = tag2events(’ordinary)
let Atomic = tag2events(’atomic)
let Read-only = tag2events(’read-only)
let Read-write = tag2events(’read-write)

B.2 Cat file

B.2.1 Utilities: hsa-lib.cat
"Utilities for HSA models"

(* Checks *)

procedure consistent(a, b) =
irreflexive a;b

end

procedure includes(a,b) = empty b \ a end

procedure equals(a,b) =
call includes(a,b)
call includes(b,a)

end

B. Bell and cat files for the HSAmodel B.1 Bell file
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(* Functions *)

let fold f =
let rec fold_rec (es,y) = match es with
|| {} -> y
|| e ++ es -> fold_rec (es,f (e,y))
end in
fold_rec

let map f = fun es -> fold (fun (e,y) -> f e ++ y) (es,{})

let rec cross ess = match ess with
|| {} -> { 0 }
|| es ++ ess ->

let yss = cross ess in
fold
(fun (e,r) -> map (fun ys -> e | ys) yss | r)
(es,{})

end

B.2.2 Handling the scope hierarchy: scopes.cat
"Handling the scope hierarchy"

let rec active-events(lvl) = match lvl with
|| ’system -> tag2events(lvl)
|| _ -> tag2events(lvl) | active-events(wider(lvl))
end

let active-instance(lvl) =
let events = active-events(lvl) in
tag2scope(lvl) & (events * events)

let union-scopes f = fold (fun (s,y) -> f s | y) (scopes,{})

B.2.3 Coherence: coh.cat
"Coherence 2"

let makeCohL(s) = linearisations(s,co0)
let same-loc-writes = loc & (W*W)
let allCoL = map makeCohL (classes (same-loc-writes))
let allCo = cross allCoL
with co from allCo

let fr = rf^-1; co
let coh = (rf|co|fr)+

call consistent(coh,po) as CohPoCons

B.2.4 Heterogeneous happens-before: hhb.cat
"Heterogeneous happens-before"

let rel-acq =
((W & Release) * (R & Acquire)) & coh

| ((F & Release) * Acquire) &
((po & (_ * W)); coh; (po? & (R * _)))

| (Release * (F & Acquire)) &
((po? & (_ * W)); coh; (po & (R * _)))

let sso s = active-instance(s) & rel-acq

let hhb = (po | union-scopes sso)+
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irreflexive hhb as HhbCons
call consistent (hhb,coh) as HhbCohCons

B.2.5 SC orders: sc.cat
"SC orders 2"

let sync-instances(lvl) =
(Synchronizing * Synchronizing) & active-instance(lvl)

let makeSCscope(lvl,lower) =
(lower|(hhb | coh)) & sync-instances(lvl)

let rec SClower(lvl) = match lvl with
|| ’wi -> makeSCscope(’wi,0)
|| _ -> let S’ = SClower(narrower(lvl)) in

makeSCscope(lvl,S’+)
end

forall lvl in scopes do
acyclic (SClower(lvl)) as ScCons

end

B.2.6 Races: hsa-race.cat
"HSA races"

let at-least-one(S) = (S * _ | _ * S)

let ordinary-conflicts =
loc & at-least-one(W) & at-least-one(Ordinary)

let matches = union-scopes active-instance

let special-conflicts =
(loc & at-least-one(W) & (Atomic * Atomic)) \ matches

let conflicts =
((ordinary-conflicts|special-conflicts) & ext) \ at-least-one(IW)

let hsa-race = conflicts \ (hhb | hhb^-1)

flag ~empty hsa-race as undefined

B.2.7 All together
"HSA"

include "hsa-lib.cat"
include "scopes.cat"

(* Coherence *)
include "coh.cat"

(* Heterogenous happens before *)
include "hhb.cat"

(* SC orders *)
include "sc.cat"

(* Races *)
include "hsa-race.cat"

B. Bell and cat files for the HSAmodel B.2 Cat file
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